## D-5 BALLISTIC PENDULUMInstructor's notes.
The collision of the ball with the catcher is inelastic, so kinetic energy is not conserved in the impact. Momentum is always conserved, so:
mv = (m+M)V M is the mass of the pendulum and m is the mass of the projectile. V is the velocity of the catcher and ball after impact, v is the velocity of the ball before impact. If one is tempted to consider conservation of linear and angular momentum as a means for analyzing the data, consider this: The momentum of the swinging catcher decreases smoothly to zero at the extreme of the swing. It loses its horizontal component of momentum to the apparatus as a whole through forces at the pendulum support point. However these constraint forces, which restrict the motion to the arc of a circle, also give the catcher a vertical component of momentum, which is finally lost due to the opposing force of gravity. (The vertical component of catcher momentum, initially zero, increases after the impact, then decreases to zero.) The angular momentum of the swinging catcher also decreases smoothly to zero, this being primarily to the earth through the gravitational interaction (the gravitational torque about the pivot point opposes the motion). If the pivot point is frictionless it can not affect the catcher's angular momentum about that point. Two things are in our favor: (1) The impact is so brief that it is over before the catcher has a chance to move much. (2) The nearly frictionless nature of the pivot is the key to proceeding with the solution, for there's only small energy loss there. Therefore, conservation of kinetic and potential energy may be used.
(1/2)(m+M)V These may be combined:
v = [(m+M)/m]√(2gh) , or better, v = [1+(M/m)]√(2gh) A straightforward (but tedious) error propagation calculation gives the determinate-error equation:
Δv/v = [M/(M+m)][ΔM/M - Δm/m] + (1/2)[Δh/h] The quantity M/(M+m) is about 0.8. The fractional error in M is 0.2% and that in m is 0.07%, and in h is about 1.4%. The error due to measurement of h is dominant, and the errors due to mass measurements are negligible. From my notes, Quantity uncertainty % uncertainty m = 67.91 gm 0.05 gm 0.07 M = 264.7 gm 0.05 gm 0.2 R = 71.1 cm 0.2 cm 0.3 h = 74.1 cm 0.1 cm 0.13 (reading uncertainty) Δh = 7.25 cm 0.1 cm 1.4 (pendulum c.m. rise) v = 584 cm/s, typical However, there are other sources of uncertainty in the firing apparatus, which cause the ball to have different velocity each time the gun is fired. While the determination of the velocity for a given trial is quite good, the reproducibility of the velocity from trial to trial may be poor, and shows up as a large variation in the values of h, larger than the simple uncertainty in reading Δh. Defects of the above analysis.
Several things were ignored: (1) Energy loss in the swing, due to the ratchet and the pivot. This makes Eq. 2 wrong. This alone would make the calculated velocities nearly 7% too small. (Beck apparatus, Wall, Ref. 2.) (2) The pendulum's effective length is 0.93 L, causing the calculated velocity to be 7% too large. (Beck apparatus, Wall, Ref 2.) (3) The center of percussion of the pendulum is above the point at which the collision occurs. This makes Eq. 2 wrong. Sandin (Ref. 3) says this gives a forward impulse to the pendulum (through the reaction force at the pivot bearing), resulting in more linear momentum after the collision than before, about 1% more for the Cenco apparatus, and 3% more for the Beck apparatus (due to its sturdier arm construction). Sandin notes that this could be eliminated by adding weights below the collision point until the center of percussion and center of mass coincide.
(1) The resting angle of the pendulum should be the same whether or not it has the ball captured in it. This should be checked by the student. (2) The ball should not 'rattle around' in the catcher during collision and subsequent swing. This would change the center of mass of the ball-pendulum combination during the swing. The ball should not end up lodged in the catcher lower or higher after the collision than before it.
(1) The radius of gyration can be found by measuring the small-angle period of the pendulum in order to find the pendulum's center of mass. (2) The energy loss in the swing can be measured from the decrease in amplitude of pendulum swing, starting from the amplitude of maximum deflection.
The instruction sheets for the Cenco Precision Ballistic Pendulum, Catalog #31379. No date, probably around 1988. The apparatus has a counterweight above the pendulum rotation axis.
Radius of gyration isn't mentioned elsewhere in Cenco's instructions! Center of percussion isn't mentioned either. The location of the pendulum Later in the Cenco document:
This is misleading in several ways. Inelastic flexing of the apparatus represents a way
Windage and bearing friction do represent losses of energy worth investigating (but difficult to do). It may be significant that Cenco no longer sells this version of the apparatus. The instruction manual for the Beck Ball Pendulum, Model M-965, includes this 'IMPORTANT NOTE':
This paragraph implies that the conservation of linear momentum does not apply in this
apparatus! No wonder students get strange ideas. Conservation of linear momentum
Data from the Beck instructions: Mass of ball (m) 57.5 g Mass of pendulum (M) 143.5 g Radius of gyration of ball 30.7 cm Radius of gyration, ball+pend 27.3 cm Period of ball+pendulum 1.08 s Rise of center of mass 10.2 cm Calculated ball velocity 636.0 cm/s % discrepancy between two methods 4.4%
For either apparatus, v ≅ 600 cm/s = 6 m/s Projectile mass ≅ 65 g = 0.065 kg Projectile kinetic energy ≅ 1.2 J Discrepancy between two methods ≅ 5% Work done in cocking the gun ≅ (11 kg)(9.8 m/s
(1) C. N. Wall and R. B. Levine,
Cenco provides a small pointer on the pendulum from which to measure the change in
height. The Cenco In the above analysis [Eq. 1-2] we assumed that the kinetic energy of the pendulum just
after impact was translational, mv
(1/2) I w Now what actually is the moment of inertia, I? If we simply put I = (m+M)R
I = M I So Eq. 2 should have read,
M In this apparatus, the radius of the catcher cylinder, r, is about 0.1 R. Therefore
R This factor 1.007 transfers to the measurement of vertical displacement, or horizontal displacement, of the catcher. This quantity is square rooted. So, neglect of the radius of gyration correction causes only about 0.7% determinate error in the height calculation and 0.35% in the velocity calculations. [In fact, the correction for the inertia of the aluminum rod is a determinate error of the opposite sign, and the two corrections tend to offset each other.] Compared to other error sources, these are negligible. Data: Aluminum rod: 30gm, length 28 cm. Support to center of ball, 31 cm. Catcher 230 gm, ball 60 gm.
(1) Did this experiment provide verification of the law of conservation of momentum? If
not, why not, and what role
(2) Did this experiment provide verification of the law of conservation of energy? Justify your answer in the same manner as indicated in item (5).
(3*) Suppose you had not bothered to restrain the apparatus to prevent recoil. The mass
of the Cenco apparatus is about 7 kilograms. The coefficient of kinetic friction between the
rubber feet and varnished wood is probably about 1. Now if you had performed the calculations
of this experiment
(4) How much systematic error would be caused if the gun were misaligned and fired
slightly upward, an angle α above the horizontal?
Consider separately the systematic error this would cause in your calculated
v (5) Kinetic energy is lost in the impact between the ball and the pendulum. Suggest what
could have happened to the that energy. Did you
(6*) Suppose the ball hit the catcher a bit offside, so that it bounced off without being captured. This may have happened when you did the experiment. In this case, will the pendulum swing higher, less high, or the same height as when the ball is properly captured? Of course you must justify your answer by appeal to the physical laws and the details of your apparatus and procedure.
(7*) The speed of the pendulum after impact decreases smoothly to zero during its swing. Is the linear momentum of the loaded pendulum conserved during its swing? Is its angular momentum conserved during its swing? Discuss this, considering the changes of momentum of the pendulum during its swing, and the forces and torques which cause those changes.
© 1997, 2004, 2012 by Donald E. Simanek. |